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ORIGINAL ARTICLE
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Health Education, National Taiwan Normal University, Taipei, Taiwan; gDepartment of Neuroscience, Yale University, New Haven, CT, USA;
hInstitute for Neural Computation, University of California San Diego, La Jolla, CA, USA

ABSTRACT
Background: The striatum supports motivated behavior and impulse control. Altered striatal
activation and connectivity has been observed in link with impulse control dysfunction in
individuals with drug addiction.
Objectives: We examined how resting state functional connectivity (rsFC) of the striatum is altered
as a result of chronic ketamine misuse.
Methods: Thirty-six ketamine users (10 women) and 20 healthy controls (9 women) completed an
assessment with the Barratt Impulsiveness Scale (BIS-11) and magnetic resonance imaging. In SPM
we examined voxel-wise connectivities of the caudate, pallidum, putamen, and ventral striatum in
ketamine users (versus healthy controls) and in association with BIS-11 score and duration of use,
all at a corrected threshold.
Results: Compared to controls, ketamine users showed higher connectivity between caudate and
dorsal anterior cingulate cortex and between pallidum and bilateral cerebellum. In ketamine
users, putamen showed higher connectivity with the left orbitofrontal cortex (OFC) in association
with both BIS-11 score and months of ketamine use. Mediation analyses suggest that the
connectivity z score mediated the relationship between impulsivity and duration of use.
Conclusions: These preliminary findings highlighted altered striatal connectivity in chronic keta-
mine users, and the potential role of putamen OFC connectivity in supporting the correlation
between impulsivity and duration of ketamine use. If replicated in a larger sample, these findings
may represent neural markers of ketamine misuse.
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Introduction

Impulsivity, striatum, and addiction

Though not listed as a diagnostic criterion in DSM-5,
impulsivity is one of the core characteristics of substance
use disorders (SUD). Many studies have pointed out the
pivotal role of impulsivity in the initiation and mainte-
nance of drug seeking and consumption (1–6). Impulsivity
along with sensation seeking prompted first use of illicit
substances in adolescents (7,8). Patients with opioid or
cocaine dependence showed higher impulsivity as assessed
with the Barratt Impulsivity Scale (BIS-11) (9–12),
Eysenck’s I7 Impulsiveness Inventory (13) or delayed dis-
counting tasks (14). Higher impulsivity was associated
with more risky behaviors (15,16), and worse prognosis
(17,18) in individuals with SUD, and impulse control
represents an important target in the treatment of SUD.

The striatum is a critical component of the reward
circuit. It has been linked to the drive for immediate
reward gratification with robust response during antici-
pation of monetary reward and reinforcement learning
(19). As individuals progress from occasional to compul-
sive drug use, drug-seeking behavior shifts from being
reward to habit driven (20), and the dorsal striatum
becomes increasingly involved during this transition
(21,22). Selective lesions of the nucleus accumbens core
induced persistent impulsive choice in rats (23). Lesion
studies in animals showed distinct roles of the lateral and
medial dorsal striatum in response selection and inhibi-
tion (24). In functional imaging of humans, striatal acti-
vation tends to accompany impulsive responding (25). An
earlier study showed that intrinsic network connectivity
of the striatum was significantly weaker in cocaine users
relative to controls, in relation to greater non-planning
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impulsivity in cocaine users (26). In another study,
cocaine-addicted individuals exhibited reduced connec-
tivity between the putamen and posterior insula and right
postcentral gyrus, and the reduction in connectivity par-
tially mediated Barratt impulsivity in cocaine-addicted
participants (27). Together, a substantial body of evidence
suggests that the fronto-striatal circuitry balances impul-
sive and controlled decision-making (28), and fronto-
striatal circuit dysfunction is associated with impulsive
behavior (28) and trait impulsivity in individuals with
SUD (29,30).

Functions of striatum

The striatum comprised a number of nuclei with dis-
tinct anatomical connections and functions (31,32).
Anatomically, the cerebral cortex projects widely to
the striatum with a topographical organization. The
caudate nucleus receives inputs primarily from the
medial and lateral prefrontal cortex and both the puta-
men and pallidum receives inputs from the motor
cortex. Striatal output nuclei project to the thalamus,
which sends projections back to the cerebral cortex,
forming a cortical-striatal-thalamic-cortical circuit for
motor and cognitive control. This circuit parallels the
cortical-pontine-cerebellar-thalamic-cortical loop and
supports large-scale integration of motor and “higher”
cognitive functions (33). Dysfunction of these circuits
have been implicated in the etiology of many neurop-
sychiatric conditions (34–36).

Numerous studies have characterized the roles of
the striatum in motor and cognitive control and in
reward processing (31,32,37). As these processes are
all intricately related to impulsivity, we explored the
relationship between the functional connectivity of the
basal ganglia in relation to individual impulsivity as
assessed by the Barratt Impulsivity Scale. Further, cor-
tical projections to the striatum are largely glutamater-
gic and chronic use of ketamine, an antagonist of
N-Methyl-D-aspartate (NMDA) receptor, may influ-
ence functional connectivity of the basal ganglia.

Ketamine abuse in Asia

Besides amphetamine-type stimulants, many new psy-
choactive drugs sneak up in the abused drug scenes invol-
ving Asian youth. Among them, ketamine has become
one of the major substances of abuse. In Hong Kong,
ketamine has been the most common substance of
abuse in teenagers since 2005 (38) and ketamine-related
events accounted for 7.1% of all toxicology consultation in
the year 2010 (39). In Taiwan, in a National Household
Survey on health and substance abuse conducted in 2005

by the Department of Health and Welfare, ketamine
ranked third (22%), following amphetamine (49%) and
MDMA (35%), as the most used illicit substance in the
population 12 to 64 years of age. Among high school
students who used club drugs, 64.4% reported using keta-
mine, followed by ecstasy (50%) and methamphetamine
(29%). The average age at first ketamine use was 13.95
years, a critical period of adolescent brain development.

Importantly, whereas ketamine is frequently used
concomitantly with other illicit drugs in western coun-
tries (40–45), use of ketamine as the primary or sole
substance is not rare in Asia (46,47). This has created
a tremendous public health issue but also provided
a unique opportunity to study the long-term conse-
quences of chronic ketamine exposure.

The current study

Despite grave concerns for growing ketamine use, there
have been few studies of the neuropsychological conse-
quences of chronic ketamine exposure. Even fewer stu-
dies have directly employed brain imaging to investigate
neural dysfunction in chronic ketamine users. Ketamine
affects NMDA receptor system and has powerful effects
on many cognitive functions including impulse control.
Ketamine or NMDA antagonists treatment increased
impulsive choice dose-dependently in animal models
(48–51) and impulsivity in humans (52,53), suggesting
that ketamine exposure may contribute to diminished
inhibitory control. Importantly, the striatum receives
glutamatergic inputs from the prefrontal cortex to sup-
port learning and goal-directed behavior (54), and dys-
function of these processes is intricately related to drug
addiction (55). Here, we examined resting state func-
tional connectivity (rsFC) of the striatum as a neural
metric to investigate how ketamine may alter cerebral
circuit functions. Specifically, we contrasted a group of
chronic ketamine users with demographically matched
non-drug using controls in striatum rsFC. We will
explore group differences in trait impulsivity and the
neural bases of impulsivity in ketamine users as well as
the influences of the duration of ketamine use on striatal
connectivity. We would like to note that the current
study was not powered to examine sex differences and
thus men and women were combined in data analyses.

Experimental procedures

Subjects and clinical assessments

The Research Ethics Committee of the China Medical
University Hospital approved the study protocol
(CMUH103-REC2-052). Candidates were assured at
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screening that their decision to participate in the study
or not would not affect their right to medical care, that
all personal information would be kept confidential,
and that they could withdraw from the study at any
time. Each participant provided a written informed
consent prior to data collection.

Ketamine-using and healthy control participants were
recruited through posters at hospitals and online adver-
tisements in the greater area of Taichung City, Taiwan.
After consenting to the study, participants completed
a clinical interview, questionnaire assessment, behavioral
test, and magnetic resonance imaging. Ketamine users
met the International Statistical Classification of Diseases
and Related Health Problems (ICD) criteria for ketamine
use disorders and tested positive for ketamine in urine
toxicology. A positive test result for other substances
including methamphetamine, opioids, ecstasy, or mari-
juana, was an exclusion criterion. All healthy control
participants denied the use of any illicit substances and
showed negative urine test results. None of the ketamine
using or healthy control participants had any major
medical or neurological illnesses, history of brain con-
cussion that resulted in the loss of consciousness or
psychotic disorders. A total of 36 ketamine users and 20
healthy controls participated in this study. Table 1 sum-
marizes the key clinical characteristics of the participants.

Magnetic resonance imaging: procedures and
parameters

Participants underwent anMRI scan, consisting of 10min
resting-state fMRI (with eyes closed) and high-resolution
structural imaging. MR image data were acquired using
a 3-Tesla scanner (Signa HDx, GE, Milwaukee, USA) at
the Department of Radiology, China Medical University
Hospital, Taichung, Taiwan. The high-resolution struc-
tural images were acquired in transverse plane along the
AC-PC line. A three-dimensional spoiled gradient-
recalled protocol with inversion recovery pulse prepared
(3D-SPGR-IrP) sequence was used (parameters: TE =
2.98 ms; prep time = 450 ms; flip angle = 12 degree;
image matrix = 224 × 224; FOV = 224 mm × 224 mm;

slice thickness = 1 mm; NEX = 1). The resting-state fMRI
data were acquired using a gradient echo single-shot echo
planar imaging sequence (parameters: TE = 35 ms; TR =
2000 ms; slice thickness = 4.4 mm; slice number = 32;
image matrix = 64 × 64; FOV = 240 mm; total scan time
= 10 min). Four dummy scans acquired at the beginning
of EPI were discarded.

Imaging data pre-processing

Brain imaging data were preprocessed using Statistical
Parametric Mapping (SPM 12, Wellcome Department of
Imaging Neuroscience, University College London, U.K.).
We followed standard procedures in image preprocessing,
as in recent work (56–60). Images of each individual
subject were first realigned (motion corrected) and cor-
rected for slice timing. A mean functional image volume
was constructed for each subject per run from the rea-
ligned image volumes. These mean images were co-
registered with the high-resolution structural image and
then segmented for normalization with affine registration
followed by nonlinear transformation (61,62). The nor-
malization parameters determined for the structure
volumewere then applied to the corresponding functional
image volumes for each subject. Finally, the images were
smoothed with a Gaussian kernel of 8 mm at Full Width
at Half Maximum.

Additional preprocessing was applied to reduce spur-
ious BOLD variances that were unlikely to reflect neu-
ronal activity (63–66). The sources of spurious variance
were removed through linear regression by including the
signal from the ventricular system, white matter, and
whole brain, in addition to the six parameters obtained
by rigid body head motion correction. First-order deri-
vatives of the whole brain, ventricular and white matter
signals were also included in the regression.

Cordes and colleagues suggested that BOLD fluctua-
tions below a frequency of 0.1 Hz contribute to region-
ally specific BOLD correlations (67). Thus, we applied
a temporal band-pass filter (0.009 < f < 0.08 Hz) to the
time course in order to obtain low-frequency fluctua-
tions, as in previous studies (64–66,68). As extensively

Table 1. Clinical characteristics of the participants.
KU (M)
n = 26

KU (W)
n = 10

HC (M)
n = 11

HC (W)
n = 9 group effect p value

Age (years) 25.2 ± 5.8 27.5 ± 5.7 25.3 ± 4.5 25.1 ± 4.2 0.45
BIS-11 score 55.5 ± 7.1 60.0 ± 11.0 53.0 ± 7.4 48.6 ± 3.5 0.003
Ketamine use duration* (months) 59.4 ± 37.0 59.0 ± 40.0 NA NA NA
Cigarette in 30 days (days) 24.5 ± 11.1 30.0 ± 0.0 1.5 ± 2.5 0.0 ± 0.0 3.6 × 10–16

Cigarette in life (years) 8.4 ± 4.7 12.1 ± 7.7 2.5 ± 3.5 0.0 ± 0.0 4.2 × 10–8

Alcohol in 30 days (days) 4.8 ± 8.5 9.0 ± 11.1 3.0 ± 3.8 0.4 ± 0.7 0.02
Alcohol in life (years) 4.3 ± 4.3 6.7 ± 6.2 5.2 ± 6.2 1.9 ± 3.4 0.18

All values are mean ± SD; KU: ketamine users; HC: healthy controls; BIS-11: Barratt Impulsivity Scale; M: men; W: women; All p values were obtained from
ANOVA except for ketamine use duration (*), where KU men and women were compared with a two sample t-test.
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investigated in Van Dijk et al., 2012, micro head motion
(> 0.1 mm) is an important source of spurious correla-
tions in rsFC analysis (69). Therefore, we applied
a “scrubbing” method proposed by Power and collea-
gues (70) and successfully applied in previous studies
(70–72) to remove time points affected by head
motions. Briefly, for every time point t, we computed
the framewise displacement given by FD tð Þ ¼
Δdx tð Þj j þ Δdy tð Þ�� �� þ Δdz tð Þj j þ r α tð Þj j þ r β tð Þj j þ
r γ tð Þj j, where ðdx; dy; dzÞand α; β; γð Þ are the transla-
tional and rotational movements, respectively, and
r (= 50 mm) is a constant that approximates the mean
distance between the center of MNI space and the
cortex and transform rotations into displacements
(70). The second head movement metric was the root
mean square variance (DVARS) of the differences in %
BOLD intensity I(t) between consecutive time points
across brain voxels, computed as follows: DVARS tð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I tð Þ � I t� 1ð Þj j2

q
, where the brackets indicate the

mean across brain voxels. Finally, to compute each
subject’s correlation map, we removed every time
point that exceeded the head motion limit FD (t) >
0.5 mm or DVARS(t) > 0.5% (70,72). On average, 1%
of the time points were removed across subjects.

Seed-based correlation and group analyses

The caudate, putamen, and pallidum masks were
obtained from the Automated Anatomical Labeling or
AAL atlas (73). The ventral striatum mask is not avail-
able from the AAL atlas. Thus, as with our previous
studies (74,75), we used a VS mask based on cytoarch-
itectonic and topographical criteria (76). All masks
were in the Montreal Neurological Institute space
(Figure 1).

The BOLD time courses were averaged spatially across
voxels over each striatum seed. For individual subjects, we
computed the correlation coefficient between the aver-
aged time course of a seed region and the time courses of
all other brain voxels. To assess and compare rsFC, we
converted these image maps, which were not normally
distributed, to z score maps by Fisher’s z transform
(77,78): z ¼ 0:5loge 1þ rð Þ= 1� rð Þ½ �. The Z maps were
used in group, random effect analyses. We performed
a covariance analysis to compare ketamine users and
healthy controls with sex as a covariate. In additional
models, we also included variables of nicotine and alcohol
use as covariates. All results were examined with
a combination of voxel p < .001 uncorrected and cluster
p < .05, FWE corrected, on the basis of Gaussian random
field theory, in SPM, following current reporting stan-
dards (79).

Next, we performed whole-brain simple regression
analyses each with BIS-11 score and duration of ketamine
use (months) as a regressor for ketamine users, both with
sex and age as covariates. For brain regions that showed
a significant correlation with both duration of use and
BIS-11 score in linear regressions, we derived the con-
nectivity z scores of the regions of interest for individual
subjects and followed up with mediation analyses to
examine the inter-relationship between BIS-11 score,
duration of ketamine use, and functional connectivity.

Mediation analyses

Across ketamine-using participants, the BIS-11 score was
positively correlated with duration of ketamine use
(months). Further, the putamen showed higher connec-
tivity with the left orbitofrontal cortex (OFC) both in
association with BIS-11 score and months of ketamine
use (see Results). Thus, we examined in mediation ana-
lyses the inter-relationships of impulsivity, connectivity

Figure 1. Seed regions: voxels overlapping between the caudate and ventral striatum (VS) were removed from each mask.
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z score, and duration of use with sex and age as covariates.
We performed mediation analyses (80), using the toolbox
M3, developed by Tor Wager and Martin A. Lindquist
(http://wagerlab. colorado.edu/tools).

In a mediation analysis, the relation between the
independent variable X and dependent variable Y, i.e.
X→Y, is tested to see if it is significantly mediated by
a variable M. The mediation test is performed by
employing three regression equations (80):

Y ¼ i1þ cXþ e1

Y ¼ i2 þ c0X þ bMþ e2

M ¼ i3þaXþe3

where a represents X→M, b represents M→Y (control-
ling for X), c’ represents X→Y (controlling for M), and
c represents X→Y. The constants i1, i2, i3 are the inter-
cepts, and e1, e2, e3 are the residual errors. In the
literature, a, b, c and c’ were referred to as path coeffi-
cients or simply paths (80,81), and we followed this
notation. Variable M is said to be a mediator of the
correlation X→Y if (c – c’), which is mathematically
equivalent to the product of the paths a*b, is signifi-
cantly different from zero (80). If the product a*b and
the paths a and b are significant, one concludes that
X→Y is mediated by M. In addition, if path c’ is not
significant, there is no direct connection from X to
Y and X→Y is completely mediated by M. Note that
path b is the relation between Y and M, controlling for
X, and should not be confused with the correlation
coefficient between Y and M.

We considered and presented the results of all six
models, although the primary goal was to test whether
putamen OFC connectivity mediated the influence of
impulsivity on the duration of ketamine use.

Results

Clinical assessments

For all clinical measures, we conducted a covariance
analysis to compare ketamine users and healthy con-
trols with sex as a covariate (Table 1). Compared to
healthy controls, ketamine users showed higher BIS-11
score (p = .003). Ketamine users also showed signifi-
cantly higher cigarette and alcohol use than healthy
controls. Further, linear regression with sex and age as
covariates showed that BIS-11 score was correlated
with duration of ketamine use (months) (r = 0.34,
p = .0478).

Resting-state functional connectivity (RSFC):
ketamine users vs. healthy controls

In a covariance analysis of the z maps, we compared
ketamine users and healthy controls with sex and age as
covariates. We evaluated the results at a threshold of
uncorrected voxel p < .001 in combination with cluster
p < .05, FWE corrected. For the caudate nucleus, ketamine
users showed higher caudate connectivity with the dorsal
anterior cingulate cortex (dACC; voxel Z = 4.24, x = −9,
y = 26, z = 31, 18,009 mm3), as compared to healthy
controls. (Figure 2(a)). For the pallidum, ketamine users
showed greater connectivity with bilateral cerebellum
(two clusters; voxel Z = 5.28, x = 27, y = −61, z = −23,
6,804 mm3; voxel Z = 4.87, x = −30, y = −61, z = −20,
5,751 mm3) than healthy controls (Figure 2(b)). For the
putamen or ventral striatum, there were no significant
group differences.

Ketamine users and healthy controls differed in the
extent of cigarette and alcohol use (Table 1). Thus, we
examined whether the findings described above were
related to cigarette and alcohol use. We cross-correlated
the z score of caudate dACC connectivity and pallidum
cerebellum connectivity with years of smoking, days of
smoking in the prior month, years of drinking, and
days of drinking in the prior month across participants
each for ketamine users and healthy controls. None of
the regressions yielded significant correlations.

Impulsivity, duration of ketamine use, and striatal
RSFC

We examined the rsFC of each seed region in relation to
BIS-11 score and duration of ketamine use (months) for
ketamine-using participants, both with sex and age as
covariates. The results are summarized in Table 2.
Briefly, putamen showed higher connectivity with the left
orbitofrontal cortex (OFC, Figure 3(a)) and the ventral
striatum (VS) showed less connectivity with the right
superior temporal sulcus (STS) and left superior frontal
gyrus (SFG) with higher BIS-11 score. The caudate nucleus
showed higher connectivity with the cerebellum, the palli-
dum showed higher connectivity with the VS and ventro-
medial prefrontal cortex (vmPFC), and the putamen
showed higher connectivity with the left OFC (Figure 3
(a)) and vmPFC, all with longer duration of ketamine use.

Mediation analyses: BIS-11 score, duration of
ketamine use, putamen-OFC connectivity

The results of mediation analyses showed that puta-
men-OFC connectivity z score mediated the correlation
bidirectionally between BIS-11 score and months of
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ketamine use (Figure 3(b, c)). All other models were
not significant in the mediation effect. Table 3 sum-
marizes the statistics of all six models. Considering
these findings, we also tested whether putamen-OFC

connectivity was correlated with BIS-11 score in HC
participants. The results of linear regression showed
that the putamen-OFC connectivity z score was not
correlated with the BIS-score in HC (p = .41, r =
0.19). However, the slopes did not differ significantly
between the CD and HC in a slope test (p = .20, t =
1.30 (82)).

Discussion

Chronic ketamine users showed higher impulsivity
than non-drug using healthy controls, as assessed by
the Barratt Impulsivity Scale (BIS-11), and higher BIS
score was associated with longer duration of ketamine
use in ketamine users. In resting state fMRI, compared
to healthy controls, ketamine users demonstrated
higher caudate connectivity with the dorsal anterior
cingulate cortex (dACC) and pallidum connectivity
with the cerebellum. Further, in ketamine-using parti-
cipants, striatal rsFC was altered in relation to both
BIS-11 score and duration of ketamine use. These find-
ings are discussed in the below.

Table 2. Regions showing functional connectivity with the seed
regions in correlation with impulsivity and duration of ketamine
use.

Regressor of interest

Seed region

Caudate Pallidum Putamen VS

BIS-11 score – – +L OFC1 - R STS2

- L SFG3

Duration of use (months) +Cerebellum4 +VS5

+vmPFC6
+L OFC7

+vmPFC8
–

Note: voxel p < 0.005 uncorrected and cluster-level p < 0.05, FWE corrected;
L: left; R: right; OFC: orbitofrontal cortex; STS: superior temporal sulcus;
SFG: superior frontal gyrus; VS: ventral striatum; vmPFC: ventromedial
prefrontal cortex. + and – each indicates positive and negative correlation
with the regressor of interest. – indicates no significant findings.

1. L OFC: voxel Z = 3.47, x = −24, y = 20, z = −23, 4,023 mm3

2. R STS: voxel Z = 3.91, x = 54, y = −64, z = 19, 6,669 mm3

3. L SFG: voxel Z = 4.00, x = −27, y = 23, z = 49, 5,130 mm3

4. Cerebellum; voxel Z = 3.89, x = −6, y = −55, z = −11, 6,615 mm3

5. VS: two clusters; voxel Z = 4.69, x = 12, y = 2, z = −11, 2,241 mm3; voxel
Z = 3.59, x = −12, y = −1, z = −8, 1,836 mm3

6. vmPFC: voxel Z = 3.64, x = 0, y = 41, z = −11, 4,833 mm3

7. L OFC: voxel Z = 4.57, x = −33, y = 20, z = −23, 7,533 mm3

8. vmPFC: voxel Z = 3.39, x = 0, y = 41, z = −14, 1,863 mm3

Figure 2. Examined at a threshold of p < .001 uncorrected, combined with cluster p < .05, FWE corrected, the results of whole-brain
covariance analysis showed higher (a) connectivity of the caudate with anterior cingulate cortex (ACC) and (b) pallidum connectivity
with the cerebellum in ketamine users (KU), as compared to healthy controls (HC). Histograms plot the mean ± S.E. of the
connectivity z score of each group.
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Ketamine users vs. controls: caudate – dACC
connectivity

Involved in reward-driven behavior (83) and in habit
formation (21), the dorsal striatum is widely implicated
in drug craving (84–86) and seeking (87–89). The
dACC plays a role maintaining working memory, mon-
itoring error, and processing conflict (90), and repre-
sents a core region of the saliency circuit (91,92).

Although many studies implicated the caudate and
dACC, few have addressed the role of caudate dACC
connectivity in the psychological processes related to
drug use. Increased rsFC between dACC and caudate
were reported in patients with obsessive-compulsive
disorder, in positive correlation with symptom severity
(93). In a treatment study of individuals with nicotine
use disorders, higher functional connectivity between
the caudate and dACC significantly predicted worse
treatment outcome (94). In a study of neurotypical

populations, individuals with less reward dependency
as a personality trait rated salient visual stimuli less
salient and demonstrated higher caudate dACC con-
nectivity during expectancy of salient stimuli (95). As
lower reward dependency reflects psychological distan-
cing from the behavioral outcome, increased caudate
dACC connectivity may conduce to non-goal directed
or habit-like behavior, as with substance misuse. Thus,
higher caudate dACC connectivity may be associated
with a compromised capacity in discriminating salient
stimuli for goal-directed behavior, and, as a result,
compulsive drug use in ketamine users.

Ketamine users vs. controls: pallidal cerebellum
connectivity

We also observed greater connectivity between the pal-
lidum and bilateral cerebellum in ketamine users. The

Figure 3. Putamen connectivity with the left lateral orbitofrontal cortex (OFC) was correlated positively with both impulsivity (left)
and duration of ketamine use (right). (a) Voxels shown in yellow represent those that overlap between the two regressions. (b) and
(c) show the results of significant mediation of the relationship of BIS-11 score and months of ketamine use, bidirectionally, by the
connectivity of the overlapping voxels.

Table 3. Mediation analyses of impulsivity, duration of use, and putamen-left orbitofrontal cortical connectivity.
p value

X M Y X → M M → Y X → Y unmediated X → Y mediated X → Y

BIS score conn z mo of use 0.0007 0.0007 0.047 0.98 0.013*
mo of use conn z BIS score 0.00007 0.007 0.047 0.98 0.022*
conn z BIS score mo of use 0.0007 0.98 0.00007 0.0007 0.99
mo of use BIS score conn z 0.047 0.007 0.00007 0.0007 0.10
BIS score mo of use conn z 0.047 0.0007 0.0007 0.007 0.08
conn z mo of use BIS score 0.0007 0.98 0.00007 0.0007 0.98

Note: conn z: connectivity z score; mo of use: months of ketamine use. *p < 0.05
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cerebellum and basal ganglia are disynaptically inter-
connected and involved in motor and non-motor func-
tions (see (96) for a review). The cerebellum and
pallidum coactivated during appetitive conditioning
with a pleasant taste stimulus in healthy subjects (97),
suggesting a potential role of pallido-cerebellar connec-
tivity in mediating reward-related processes. The cere-
bellum responds to reinforcement learning (98), drug
cues (99), memory (100) and craving (101). Drug-
induced activity-dependent synaptic changes in the
cerebellummay be crucial to the transition from recrea-
tional to compulsive drug use (see (102) for a review).
In other imaging studies, Koehler et al. demonstrated
increased rsFC between right striatum and cerebellum
in pathological gamblers (103). The findings of
increased pallido-cerebellar connectivity may reflect
an outcome of drug conditioning in chronic ketamine
users.

Striatal connectivity in relation to impulsivity and
duration of use

Barratt impulsivity and duration of ketamine use were
both associated with increased putamen connectivity
with the orbitofrontal cortex (OFC). Mediation analyses
showed that the connectivity mediated the relationship,
bidirectionally, between impulsivity and duration of use.
Other models of mediation were not significant. The
results suggested mutual influences between impulsivity
and duration of ketamine use via cerebral connectivity.
That is, impulsive personality trait may contribute to
longer duration of ketamine use via increases in putamen
OFC connectivity. It is statistically equally plausible that
longer duration of ketamine use may render individuals
more impulsive via the changes in connectivity, although
Barratt impulsivity has largely been considered as a trait
measure and less amenable to environmental influences.

Although no studies to our knowledge have reported
alterations of putamen OFC connectivity in individuals
with substance use disorders, the roles of both putamen
and OFC have been examined in relation to addiction-
related behavioral processes. In recordings from behav-
ing primates, both OFC and putamen showed neuronal
activities that depended upon the choice of which
reward to collect in a spatial-delayed task (104). Both
putamen and OFC connectivity have been implicated in
self-control during delayed gratification (105). An fMRI
study demonstrated a correlation between a fun seeking
trait and resting-state connectivity between the OFC and
putamen (106). In cigarette smokers engaged in cue
reactivity tests, the putamen and OFC showed cue
responses each in relation to attentional bias and craving

(107). An earlier positron emission tomography study
demonstrated a lower level of dopamine D2 receptor
availability in the striatum, including the putamen, in
association with altered metabolic rate in the OFC in
stimulant abusers (108). More broadly, in rodent mod-
els, a high level of serotonin in the OFC combined with
a low level of dopamine in the putamen predicted the
emergence of rigid decision-making (109), a behavior
reminiscent of habitual drug taking. Although mediation
analyses did not distinguish the directional relationship
between impulsivity and duration of use, the current
findings add to the literature of putamen and OFC
dysfunction in substance misuse.

Limitations of the study and conclusions

A number of limitations are worth considering. First, the
sample size is small in this pilot study. In particular,
a group of non-substance-abusing individuals with
a wider range of impulsivity is needed to confirm whether
the current findings are specific to chronic ketamine users
or relate more broadly to impulsivity. In particular, the
study was not powered to examine sex differences. Thus,
these findings are preliminary and will need to be repli-
cated in future work. An additional issue concerns the
potential influence of psychiatric comorbidities on the
current findings. We did not screen for psychiatric ill-
nesses other than psychosis in the current study. Second,
although regression analyses largely ruled out an effect of
alcohol and cigarette use on the current findings, it
remained unclear how these comorbidities may influence
striatal connectivity. That is, while the analyses did not
reveal much relationship between imaging findings and
smoking/drinking variables, we could not conclude that
these findings are specific to ketamine misuse. Third,
questionnaires, such as the urgency, premeditation, per-
severance, sensation seeking, and positive urgency
(UPPS-P) behavioral scale (110), and behavioral tests,
such as the stop signal task (111,112), may address impul-
sivity features not captured by the BIS-11 and reveal other
changes in striatal rsFC in ketamine users. Finally, we
targeted the striatum in the current study, but other
regions of the frontal-limbic circuit need to be investi-
gated in relation to impulsivity (113).

In conclusion, we demonstrated changes in resting
state striatal connectivity in chronic ketamine users.
Increased caudate connectivity with the anterior cingulate
cortex may be related to heightened saliency response to
drug cues and habitual drug seeking. Putamen connectiv-
ity with orbitofrontal cortex supported the inter-
relationship between impulsivity and duration of use. If
corroborated in a larger sample, these findingsmay add to
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a growing literature of the addiction neuroscience of
ketamine misuse.
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